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Exploiting Calibration-Induced Artifacts in
Lossless Compression of Hyperspectral Imagery
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Abstract—Algorithms for compression of hyperspectral data
are commonly evaluated on a readily available collection of Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) images.
These images are the end product of processing raw data from
the instrument, and their sample value distributions contain
artificial regularities that are introduced by the conversion of
raw data values to radiance units. It is shown that some of the
best reported lossless compression results for these images are
achieved by algorithms that significantly exploit these artifacts.
This fact has not been widely reported and may not be widely
recognized. Compression performance comparisons involving
such algorithms and these standard AVIRIS images can be
misleading if they are extrapolated to images that lack such
artifacts, such as unprocessed hyperspectral images. In fact, two
of these algorithms are shown to achieve rather unremarkable
compression performance on a set of more recent AVIRIS images
that do not contain appreciable calibration-induced artifacts.
This newer set of AVIRIS images, which contains both calibrated
and raw images, is made available for compression experiments.
To underscore the potential impact of exploiting calibration-
induced artifacts in the standard AVIRIS datasets, a compression
algorithm is presented that achieves noticeably smaller com-
pressed sizes for these datasets than is reported for any other
algorithm.

Index Terms—AVIRIS, hyperspectral imagery, lossless data
compression, predictive compression.

I. INTRODUCTION

The enormous data volumes produced by hyperspectral im-
agers have sparked an interest in specially designed data com-
pression techniques to increase data return from spaceborne
hyperspectral imagers as well as to provide more efficient
ground archival and distribution of hyperspectral imagery.
Scientist end-users of such imagery are often reluctant to
accept any distortion introduced by lossy compression, and
thus much of the focus has been on lossless compression
methods, e.g., [1]–[11].

Algorithms for compression of hyperspectral data are com-
monly evaluated on a readily available collection of Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) im-
ages. These images have undergone a radiometric calibration
procedure that introduces artificial regularities into the data.
In this paper we review two of the lossless compression
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algorithms that are among the best performing on this data and
show that they benefit from this calibration-induced structure,
thus potentially creating a misleading impression of how they
will compare with other algorithms when applied to, e.g.,
raw hyperspectral imagery on a spacecraft. To underscore the
potential impact of exploiting calibration-induced structure,
a compression algorithm is presented that is deliberately
designed to exploit this structure and that achieves significantly
smaller compressed sizes for the standard AVIRIS images than
is reported for any other algorithm. Finally, we present lossless
compression results on these images and on some additional
hyperspectral images which we make publicly available.

II. THE STANDARD 1997 AVIRIS IMAGES

The calibrated radiance images from the 1997 AVIRIS
sample data products1 are the most widely used data for
benchmarking hyperspectral image compression algorithms,
both lossless (e.g., [1]–[11]) and lossy (e.g., recently [12]–
[16]). These images are listed in Table I. Each image contains
614 samples/line and includes 224 spectral bands covering
wavelengths from 370 nm to 2500 nm. Radiance values are
stored as 16-bit signed integers, but the raw AVIRIS data from
which they were produced consists of 12-bit unsigned values
[17].

TABLE I
THE STANDARD 1997 AVIRIS IMAGES.

Site Features Lines

Moffett Field vegetation, urban, water 2031
Jasper Ridge vegetation 2586
Cuprite geological features 2206
Lunar Lake calibration 1431
Low Altitude high spatial resolution 3689

The radiance images are the product of radiometric calibra-
tion, which converts raw digital number (DN) values acquired
by the instrument to convenient multiples of radiance units
[17], [18]. Of most significance for our interests is the fact that
during the calibration procedure the DN values are multiplied
by a band- and image-dependent factor that is somewhat larger
than one — it is always greater than 1.8 for these images.
The effect of this scaling can be seen in the histograms of
sample values in individual calibrated bands; it is manifested
as regularly spaced local peaks, with the spacing of the peaks
essentially equal to the scaling factor. It is primarily this

1Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html. This set is
generally referred to as the 1997 images, although the Low Altitude image
was in fact acquired in 1996.
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regularity that can be exploited by a compression algorithm.
We describe some further details of the calibration procedure
below, but understanding the finer details of this procedure is
not essential to appreciating the central point of this paper.

The band scaling factors are the product of a radiometric
calibration coefficient determined from laboratory calibration
measurements, an onboard calibration coefficient derived from
an onboard calibrator signal, and an arbitrary factor to scale
the radiance units appropriately for representation with 16-bit
integers [17]. Figure 1 shows the resulting band scaling factors
for two representative images from the standard set.
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Fig. 1. Band scaling factors between radiance and raw DN values for the
Jasper Ridge and Low Altitude images. Scaling factors for the other 1997
images are nearly indistinguishable from those for the Jasper Ridge image. The
shading indicates the range of bands corresponding to the four spectrometers
(labeled A, B, C, D) used in the AVIRIS instrument [17].

Figure 2 shows a portion of the histogram for band 54 of
the Jasper Ridge image. This band has a scaling factor of 5.4,
and the local peaks at this spacing are apparent.

Calibration involves more than simply uniformly scaling
DN values for each band; additional steps include subtraction
of an estimated dark signal level (which varies from line to
line) [17], [18] and spectrometer-dependent nonlinear correc-
tions [19]. These additional steps have a tendency to smear
the histograms, making the peaks less prominent. But if the
standard deviation of the combined adjustment from these
corrections is small compared to the scaling factor, then local
peaks may still be noticeable; this is apparently the situation
in Figure 2.

The histogram regularities are more pronounced for radiance
values taken from the same line, presumably because the same
dark signal estimate is subtracted from each value in a line. A
single line from one band does not contain enough samples to
provide a good demonstration of this, but we can produce a
histogram for all lines that have a given dark signal value. We
have done this for band 54 of the Jasper Ridge image using the
most common dark signal value. Figure 3 shows the resulting
histogram; we see that the peaks are much more pronounced
than those in Figure 2.

III. EXPLOITING CALIBRATION-INDUCED ARTIFACTS

Most of the lossless hyperspectral image compression al-
gorithms in the literature, and all of the ones we discuss in
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Fig. 2. Portion of histogram of calibrated radiance values in band 54 of the
Jasper Ridge image.
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Fig. 3. Portion of histogram of calibrated radiance values in band 54 of the
Jasper Ridge image, from the lines with the most common dark signal value.

this article, perform predictive compression. For our purposes,
a predictive compression algorithm is defined as follows. If
sb,y,x denotes the value of the sample in band b at line y and
column x of a hyperspectral image, then to encode the value
of sb,y,x, a predictive compression algorithm uses the values
of previously encoded samples to compute a predicted sample
value ŝb,y,x. The prediction residual (the difference between
sb,y,x and ŝb,y,x) is then losslessly encoded using an entropy
coder. For convenience, we will also use the notation sb(i) to
denote the ith sample in band b when samples within the band
are arranged in raster-scan order.

Under the predictive compression framework, the com-
pressor’s entropy coder implicitly or explicitly relies on a
probability distribution model to encode prediction residuals.
For some predictors, the distribution of prediction residuals
may inherit structure such as regularly spaced local peaks
from the underlying data. In this case, the compressor may
be taking advantage of artifacts in the data when the entropy
coder is capable of exploiting such structure, as is typically the
case when adaptive arithmetic coding or range coding is used.
In the remainder of this section we describe the predictors
used by certain compressors and demonstrate that two of them
facilitate exploitation of calibration-induced data structure in
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this manner.
To our knowledge, the best lossless compression results on

the 1997 AVIRIS images are obtained by the locally averaged
interband scaling quantized lookup table (LAIS-QLUT) com-
pressor [1], which is a modification of the locally averaged
interband scaling lookup table (LAIS-LUT) compressor [2],
which in turn is an extension of the lookup table (LUT)
compressor presented in [3].

The LUT algorithm [3] predicts the value of sample sb(i)
by finding the most recent index j of the sample in band
b− 1 that matches the value of sb−1(i). That is, the predictor
finds the largest j < i such that sb−1(j) = sb−1(i). If such a
match exists, then the predictor is ŝb(i) = sb(j), otherwise the
predictor is set to the value of the sample in the previous band,
ŝb(i) = sb−1(i). A lookup-table facilitates the implementation
of this prediction method. Prediction residuals are encoded
using adaptive range coding.

The LAIS-LUT refinement of this approach [2] determines
the indices j1, j2 of the two most recent matches for sb−1(i)
in band b − 1, i.e., the algorithm finds j1 < j2 < i such that
sb−1(j1) = sb−1(j2) = sb−1(i). If there is only one such
index j1, then the predictor is ŝb(i) = sb(j1). If no match
is found, a local interband predictor ŝ′b,y,x is computed by
scaling the value of sb−1,y,x by the average of band ratios at
three neighboring spatial locations:

ŝ′b,y,x =
1
3

(
sb,y−1,x

sb−1,y−1,x
+

sb,y,x−1

sb−1,y,x−1
+

sb,y−1,x−1

sb−1,y−1,x−1

)
sb−1,y,x

and the predictor is ŝb(i) = round(ŝ′b,y,x). If two matches are
found, then ŝb(i) is equal to one of the two candidates sb(j1),
sb(j2), whichever is closer to ŝ′b,y,x. Prediction residuals are
encoded using adaptive arithmetic coding.

The LAIS-QLUT algorithm [1] modifies LAIS-LUT by
uniformly quantizing the value of sb−1(i) used in the lookup
table, and by using a different definition of the local interband
predictor ŝ′b,y,x. There are two variations of the LAIS-QLUT
algorithm that differ in the method used to select the quanti-
zation step size used for each band.

The LUT-based compressors make limited use of spatial
correlation, and they exploit spectral dependency using only a
single band. And yet, for the 1997 AVIRIS images, on aver-
age the LAIS-LUT and LAIS-QLUT compressors outperform
substantially more complex compressors such as clustered
differential pulse code modulation (C-DPCM) [4]. The C-
DPCM compressor partitions spectral vectors into 16 clusters
and then applies a separate least-squares optimized 20th order
linear predictor to each cluster of each band.

In our analysis and experiments we focus on the LUT and
LAIS-LUT methods, as the LAIS-QLUT method appeared
in the literature only after we had performed much of this
work. In any case, the LAIS-QLUT compressor contains the
key features that the LUT and LAIS-LUT compressors use
to benefit from regularities in calibrated imagery, so it is
reasonable to assume that extending our experiments to the
LAIS-QLUT method would produce results similar to those
for the LUT and LAIS-LUT methods.

Histograms of prediction residuals resulting from apply-
ing the LUT and LAIS-LUT methods to the 1997 AVIRIS
images clearly show structure inherited from the calibration-
induced structure in the data (Figure 4). The adaptive entropy
coding techniques used in the LUT and LAIS-LUT methods
are able to exploit this structure for improved compression
performance. This phenomenon does not seem to be well-
recognized, although it is noted in [5] for the LUT method. For
comparison, the figure also shows prediction residuals for the
“fast lossless” (FL) compressor of [6], [7]. The FL predictor
combines spatial and spectral prediction via adaptive linear
filtering, making predictions using previously coded samples
in a small neighborhood from the current and three preceding
bands.
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Fig. 4. Histogram of prediction residuals for band 54 of the Jasper Ridge
image for LUT, LAIS-LUT, and FL predictors.

The structure in the LUT and LAIS-LUT prediction residual
distributions takes the form of somewhat regularly spaced
sharp spikes. This structure arises from similarly spaced spikes
in the sample distributions (introduced by radiometric calibra-
tion) combined with the fact that the LUT and LAIS-LUT
predictors usually pick previously encoded values, often from
the current line of the image, as predictions.

By contrast, the FL predictor tends to produce prediction
residuals with a relatively smooth distribution. Furthermore,
the FL compressor uses a simpler entropy coding approach
(specifically, adaptive Golomb coding similar to that described
in [20]) that would not be particularly effective at encoding
residuals with a spiky distribution in any case.

IV. A NEW COMPRESSOR

We now describe a new predictive compressor that deliber-
ately exploits structure introduced by radiometric calibration.
The effectiveness of this compressor on the standard 1997
AVIRIS images is significantly better than that of the LUT-
based compressors (and all other compressors that we know
of), but the primary reason for creating it is to demonstrate
the extent to which the calibration-induced structure can be
exploited. We refer to the approach as two-stage predictive
(TSP) compression. This approach is mildly reminiscent of a
simple technique for exploiting sparse histograms in standard
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(two-dimensional) images that is described in Section V-B
of [20].

A. Prediction

Our TSP compressor makes use of a conventional predictor
to form an initial integer-valued prediction p̂b(i). This initial
predictor is intended to exploit spatial and/or spectral corre-
lations in the data but not calibration-induced structure. In
our experiments we use the FL predictor for this purpose, but
other choices should also work well. To form the ultimate
prediction, ŝb(i), statistics from the initial prediction residuals
are weighted by an adaptively updated function that takes
advantage of calibration-induced data structure.

During compression, for each band we tabulate counts of
the past values of the difference between the initial prediction
and the actual sample value; specifically, we let fb(r) be equal
to the number of times this difference has been equal to r in
band b. Note that fb is thus also implicitly a function of the
current sample index i. We would typically expect an initial
prediction residual close to zero to be most common; fb should
tend to smoothly decay away from its peak, which should be
near zero.

We also maintain an adaptively updated weight function
wb(m) defined over all possible sample values m in the band.
The weight function is intended to capture information about
data regularities introduced by the calibration process. We
consider two choices for weight functions. Our first weight
function (W1) simply maintains a tally of the past sample
values in the band, so that at sample index i we have
wb(m) = |{j < i : sb(j) = m}|. The second weight function
(W2) gives much higher weight to more recent sample values
by assigning wb(m) = 2−a, where a is the number of lines
since the value m previously appeared in the band (e.g., a = 0
if the sample value m appeared previously in the current line
being encoded) or a is the index of the line being encoded
if m has not yet appeared. Our W1 definition is motivated
by a desire to exploit the sort of overall histogram structure
seen in Figure 2, while our W2 definition, which gives highest
weight to samples within the same line, is motivated by the
more significant local structure suggested by Figure 3. Other
weight functions may give better compression performance.

The final predicted value is

ŝb(i) = arg max
m

fb (m− p̂b(i)) · wb(m).

The difference between ŝb(i) and sb(i) is losslessly encoded
using adaptive arithmetic coding, as we describe below.

As an example illustrating our prediction approach, Figure 5
shows the counts fb(m− p̂b(i)), the weight function wb(m),
and the product fb(m−p̂b(i))·wb(m) when encoding a sample
near the middle of band 98 in the Jasper Ridge image using
weight function W1.

B. Entropy Coding

For our entropy coding stage, we use an arithmetic coding
approach that is effective at encoding a source with an arbitrary
distribution. Specifically, for each spectral band we apply a
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Fig. 5. Example of the functions used to compute the TSP-W1 predictor
in band 98 of the Jasper Ridge image. The vertical scales are irrelevant in
the computation. The product function is scaled differently for clarity of
presentation.

separate instance of the adaptive arithmetic coder of [21] using
the publicly available software implementation.2 We use the
software’s adaptive zero-order integer-based model encoding
method, setting all parameters to their default values.

We also computed compression results when this same
entropy coding approach is applied to prediction residuals
produced by the LUT, LAIS-LUT, and FL predictors. We
do this in part for convenience, but also because using the
same entropy coder can facilitate a fair comparison between
different predictors. In our results we designate these mod-
ified compressors by appending the # symbol following the
algorithm name (e.g., LUT#).

The adaptive zero-order integer-based model method of the
arithmetic coding software of [21] cannot operate on predic-
tion residuals directly; instead it takes as input a sequence
known as the pattern [22], [23] of the residual sequence. In
the pattern, the integer n corresponds to the nth new symbol
to appear in the residual sequence. Thus each integer in the
pattern must be in the range 1, . . . , r + 1, where r is the
largest integer seen in the pattern so far. In order to recover
the original residual sequence, the decoder needs to know the
correspondence between the residuals and the pattern integers.
We encoded this additional information using a somewhat ad
hoc technique; since this information accounted for less than
0.7% of the total bit rate on each of the images considered in
this paper, improvements to this technique would have little
impact on the results and we omit further details.

V. RESULTS

A. 1997 AVIRIS Images

Table II lists the compressed data rates in bits/sample for
several lossless compression methods applied to the standard
1997 AVIRIS images. As a reference point, we include results
from [8] for the JPEG-LS image compression standard [20] ap-
plied independently to spectral bands. The table also includes
results from the literature for C-DPCM [4], spectral fuzzy-
matching pursuits (S-FMP) [5], LUT [3], LAIS-LUT [2], and

2http://www.cs.mu.oz.au/∼alistair/arith coder/
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TABLE II
COMPRESSION PERFORMANCE (RATE IN BITS/SAMPLE) ON THE 1997 AVIRIS IMAGES.

LAIS-
JPEG- SLSQ- C- S- LAIS- LAIS- QLUT- TSP- TSP-

Image LS OPT FL FL# DPCM FMP LUT LUT# LUT LUT# OPT W1 W2

Moffett Field 8.04 4.99 4.99 4.93 4.62 4.63 5.05 5.05 4.76 4.79 4.62 4.67 4.12
Jasper Ridge 8.38 4.96 4.95 4.87 4.62 4.63 4.95 4.93 4.68 4.70 4.61 4.51 4.08
Cuprite 7.66 4.94 4.91 4.82 4.68 4.66 4.65 4.66 4.47 4.48 4.29 4.53 3.77
Lunar Lake 7.48 4.95 4.91 4.83 4.75 4.66 4.71 4.71 4.53 4.53 4.34 4.36 3.81
Low Altitude 8.00 5.27 5.26 5.18 – – – 5.20 – 5.00 – 5.00 4.31
Average (first four images) 7.89 4.96 4.94 4.86 4.67 4.64 4.84 4.84 4.61 4.63 4.47 4.52 3.95
Average (all images) 7.91 5.02 5.00 4.93 – – – 4.91 – 4.70 – 4.62 4.02

LAIS-QLUT-OPT [1], which is the LAIS-QLUT variation that
selects the optimum lookup table index quantization step size
for each band. Results for spectral-oriented least squares using
the optimum selection between interband and intraband pre-
diction (SLSQ-OPT) are obtained using data provided by the
authors of [9]. We obtained FL results after partitioning images
into 512-line segments (with a smaller final segment), and so
they are slightly better than results reported in [6], which used
32-line segments. We obtained results for LUT# and LAIS-
LUT# using our own implementation of the predictors. The
last two columns of the table list compression results for
our TSP method using the two different choices of weight
function. Note that results for C-DPCM [4] are obtained by
compressing images in 512-line segments, omitting some of
the lines at the end of each image. All other results in Table II
are for complete images.

It can be concluded from comparing the TSP results with
the FL# results that both versions of the TSP compressor
are gaining an advantage by exploiting calibration-induced
artifacts in the standard AVIRIS images. Furthermore, the
TSP-W2 compressor provides roughly half a bit per sample
improvement over the previous best results.

Figure 6 shows the compressed data rate for each band
of the Jasper Ridge image for both versions of the TSP
compressor, as well as for the LUT#, LAIS-LUT#, and FL#
compressors. Compared to the FL predictor, the TSP predictors
and the LUT-based predictors provide the most significant
gains in the first 32 bands, where the band scaling factor is
largest (cf. Figure 1).

B. AVIRIS Images from the CCSDS Test Set

Calibrated and uncalibrated AVIRIS images have been pro-
vided to the Consultative Committee for Space Data Systems
(CCSDS) Multispectral and Hyperspectral Data Compression
working group for compression testing and evaluation. These
images are now available for download.3 This newer AVIRIS
data, summarized in Table III, consists of five calibrated and
corresponding 16-bit raw images acquired over Yellowstone,
WY in 2006, as well as two additional 12-bit uncalibrated
images. Each image is a 512-line scene containing 224 spectral
bands. We partitioned contiguous portions of the complete
runs into 512-line scenes and selected a manageable subset
for inclusion in the CCSDS test set. Our aim in selecting

3http://compression.jpl.nasa.gov/hyperspectral
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Fig. 6. Compressed data rate for each band of the Jasper Ridge image for
the LUT#, LAIS-LUT#, FL#, TSP-W1, and TSP-W2 compressors.

the portions of runs and scenes within the runs was to
eliminate non-imaging lines at the start and end of a run, and
avoid scenes containing lines affected by an intermittent data
corruption anomaly.

TABLE III
AVIRIS IMAGES INCLUDED IN THE CCSDS TEST SET.

Scene Samples/ Bit
Site Numbers Year Line Depth Type

Yellowstone 0, 3, 10, 11, 18 2006 677 16 cal.
Yellowstone 0, 3, 10, 11, 18 2006 680 16 uncal.
Hawaii 1 2001 614 12 uncal.
Maine 10 2003 680 12 uncal.

Table IV gives compression performance results for the
FL, FL#, LUT#, LAIS-LUT#, and TSP compressors on the
AVIRIS images in the CCSDS test set. The authors of [5]
speculate that an algorithm such as LUT that exploits sparse
histograms may lose its performance advantage when applied
to uncalibrated data. Table IV supports this; even without arith-
metic coding, the FL compressor noticeably outperforms the
two LUT-based compressors examined, and the TSP prediction
method is seen to offer no performance advantage over the
FL predictor on the uncalibrated images. In addition, the table
shows that the algorithms that exploit calibration artifacts in
1997 AVIRIS images have no performance advantage on the
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TABLE IV
COMPRESSION PERFORMANCE (RATE IN BITS/SAMPLE) ON AVIRIS

IMAGES IN THE CCSDS TEST SET.

LAIS- TSP- TSP-
Image FL FL# LUT# LUT# W1 W2

16-bit Calibrated Images
Yellowstone 0 3.96 3.91 4.82 4.48 3.94 3.99
Yellowstone 3 3.83 3.79 4.62 4.31 3.81 3.86
Yellowstone 10 3.40 3.37 3.96 3.71 3.37 3.42
Yellowstone 11 3.63 3.59 4.34 4.02 3.60 3.67
Yellowstone 18 3.94 3.90 4.84 4.48 3.92 3.97
Average 3.75 3.71 4.52 4.20 3.73 3.78

16-bit Uncalibrated Images
Yellowstone 0 6.23 6.20 7.14 6.78 6.23 6.27
Yellowstone 3 6.10 6.07 6.91 6.60 6.09 6.13
Yellowstone 10 5.65 5.60 6.26 6.00 5.59 5.64
Yellowstone 11 5.86 5.81 6.69 6.30 5.83 5.88
Yellowstone 18 6.32 6.26 7.20 6.82 6.28 6.32
Average 6.03 5.99 6.84 6.50 6.01 6.05

12-bit Uncalibrated Images
Hawaii 1 2.64 2.58 3.26 3.05 2.61 2.62
Maine 10 2.72 2.68 3.45 3.19 2.71 2.74
Average 2.68 2.63 3.35 3.12 2.66 2.68

2006 calibrated AVIRIS images.
Figure 7 shows the band scaling factors for AVIRIS Yellow-

stone images in the CCSDS test set. Notably, in contrast with
the 1997 images, the scaling factor is less than one for all but
the first three bands. This is significant because with a scaling
factor that is approximately one or smaller we would expect
calibration induced artifacts of the sort exhibited in Figure 2
to be significantly diminished or eliminated, as the different
DN values would not translate to easily distinguishable peaks
in the calibrated sample distribution. In fact we did not discern
conspicuous calibration-induced structure in histograms for
individual bands of the calibrated 2006 AVIRIS images. As
an aside, we remark that scaling a band by a factor less
than one followed by rounding to an integer is an irreversible
(lossy) operation that reduces dynamic range. Bands from the
calibrated images yielded lower compressed data volumes than
the corresponding bands in the raw data by an amount very
nearly equal to the difference that would be expected from the
scaling factors.

VI. CONCLUSIONS

To summarize, the standard 1997 AVIRIS images have
some artificial structure that was introduced by radiometric
calibration, and compression algorithms can (by design or
by accident) exploit this structure. This is the case for the
LUT and LAIS-LUT compressors. In fact, we were able to
take a compressor that did not exploit these artifacts and
make relatively simple modifications (designed specifically to
exploit the artifacts) to produce a new lossless compressor that
yields roughly a half bit per sample improvement over the
previous best (among all compressors) on the 1997 AVIRIS
images.

Compressors that exploit calibration artifacts may be desir-
able for data archival and distribution applications, provided
that the data exhibits such artifacts. Furthermore, if calibration
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Fig. 7. Band scaling factors between radiance and raw DN values for
Yellowstone AVIRIS images in the CCSDS test set.

artifacts are expected in an application, a compressor specif-
ically designed to exploit such artifacts may achieve a large
advantage, as evidenced by our TSP compressors.

Our main point, however, is that comparisons among com-
pressors on hyperspectral images that contain calibration arti-
facts may not translate well to hyperspectral images that do
not contain such artifacts. In particular, when the application
is compression of raw hyperspectral images onboard a space-
craft, compressor comparisons on the 1997 AVIRIS images
can be misleading. In fact, while the TSP compressors and the
LUT-based compressors that we examined achieved excellent
performance on the 1997 AVIRIS images, they fared poorly
compared to the FL compressor on uncalibrated AVIRIS
images and even on calibrated AVIRIS images (from 2006)
that lack conspicuous calibration artifacts.

We emphasize that there is nothing inherently wrong with
a compression algorithm that has the ability to exploit re-
dundancies not seen in raw data. Indeed, theoretical results
for universal data compression imply that a compressor can
potentially exploit a very wide variety of types of artifacts in
an image, while achieving a compression effectiveness only
negligibly worse on artifact-free data than a compressor that
does not exploit artifacts. However, in practice such a flexible
algorithm would likely be more complex (potentially signif-
icantly so) than the non-exploiting algorithm, and so would
usually not be a serious competitor for raw data applications.

We have illustrated how calibration-induced data structure
can be exploited by adaptive entropy coding applied to resid-
uals from a suitably defined predictor, as is the case for the
LUT, LAIS-LUT, and TSP compressors. The potential for
exploiting such structure is a characteristic inherent in the data
set. Other compression methods, such as the use of runlength
coding modes, as in [10], and options for entropy coding
certain spectral bands directly (rather than encoding prediction
residuals), as in [4] and [11], have the potential to benefit
from data regularities in more subtle ways. Furthermore, lossy
and near-lossless compression techniques can also potentially
exploit calibration artifacts; however, we would expect any
gains in these cases to be small and to diminish rapidly as
more distortion is allowed. It would be prudent to be at least
mildly cautious when interpreting any compression results on



To appear in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

the 1997 AVIRIS images.
More importantly, we suggest that compression researchers

move away from using the 1997 AVIRIS images as a standard
test set. We have made the other AVIRIS scenes mentioned
in this article publicly available so that they can be used for
compression comparisons. (Note that even though the 2006
calibrated images do not contain obvious calibration artifacts,
we suggest using the uncalibrated images for compression
benchmarking purposes.)

We remark that hyperspectral images are not the only type
of data that may contain calibration artifacts; for example,
multispectral images and ordinary (two-dimensional) images
acquired for science purposes may undergo processing that
includes calibration.

It is also perhaps worth noting that some types of detectors
may inherently produce data with non-smooth histograms
(e.g., some types of analog-to-digital converters can have
an odd-versus-even bias). Thus even raw data may contain
artificial structure that can be exploited. Clearly, in such a case
an onboard data compression system might quite reasonably
be designed to exploit such artifacts, although we might expect
the gains from such exploitation to be much smaller than those
demonstrated here.

More generally, it is important to note that raw data from
a spaceborne hyperspectral imager may contain artifacts due
to the imager design that are not found in raw AVIRIS
images. For example, in a “pushbroom”-type imager, samples
in different cross-track positions are acquired with different
detector elements that may differ in gains and other proper-
ties; as a result, the acquired images may contain features
not present in images from a “whisk broom” imager such
as AVIRIS. The bottom line is well known: compare data
compression algorithms on data that is representative for the
desired application.
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